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Abstract. Following O’Meara’s result [Journal of Algebra and Its Applica-

tions Vol 13, No. 8 (2014)], it follows that the block matrix A =

(
B 0

0 0

)
∈

Mn+r(R), B ∈ Mn(R), r ≥ 1, over a von Neumann regular separative ring
R, is a product of idempotent matrices. Furthermore, this decomposition into

idempotents of A also holds when B is an invertible matrix and R is a GE ring
(defined by Cohn [New mathematical monographs: 3, Cambridge University

Press (2006)]). As a consequence, it follows that if there exists an example of a

von Neumann regular ring R over which the matrix A =

(
B 0
0 0

)
∈ Mn+r(R)

where B ∈ Mn(R), r ≥ 1 , cannot be expressed as a product of idempo-

tents, then R is not separative, thus providing an answer to an open question
whether there exists a von Neumann regular ring which is not separative. The

paper concludes with an example of an open question whether every totally

nonnegative matrix is a product of nonnegative idempotent matrices.

1. Introduction and notation

Decompositions of singular matrices over a field or division ring (cf. J. Erdos,
Laffey) as product of idempotent matrices led to the study of the decomposition
of certain elements of a ring as a product of idempotents. There is a plenty of
literature related to this question, where some of these are concerned with semi-
groups, nonegative matrices, or von Neumann regular rings (cf. Gould, Jain-Leroy,
O’Meara). All rings are unital. U(R), E(R), and ΠE(R) denote the set of units,
the set of idempotents and the set of elements in R that are product of idempotents,
respectively.

We now give some basic facts about the decompositions of zero divisors of a ring
into products of idempotents.

If an element a of a ring can be written as product of idempotents then both
its left and right annihilators are nonzero. This leads to the study of the following
property

∀a ∈ R, l(a) ̸= 0 ⇔ r(a) ̸= 0 (∗)

We note that unit regular rings, artinian rings, matrix rings over quasi euclidian
rings, amongst others, have this property (*) (cf. [10])
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For example, for any ring S, consider the matrix A =

(
x y
0 0

)
∈ R = M2(S).

Clearly l(A) ̸= 0 and, if A is a product of idempotent matrices, we must have
r(A) ̸= 0. Of course, this condition is not sufficient to write A as a product of
idempotents. For instance, if S = Q[X,Y ] and X = x, Y = y we have XY ∈
XS ∩ Y S. But it is well known that, in this case, the matrix A is not a product of
idempotent matrices ([7]).

We collect some basic facts around matrices over any ring with a zero row. These
matrices will be the main topic of the next section. For any matrix A ∈ Mn(R)
we write Ai = (1− eii)A, the matrix obtained from A by replacing its ith row by a
zero row.

2. Preliminaries

Lemma 1. (1) Suppose u ∈ U(R), e ∈ E(R), and r ∈ eR are such that
eu, u−1r ∈ ΠE(R) then r, ru, ur ∈ ΠE(R).

(2) Let A ∈ Mn(R) with rows L1, . . . , Ln be such that Li = Σj ̸=iαjLj with
1 − Σj ̸=iαj ∈ U(R). Then if Ai = (1 − eii)A is a product of idempotents,
the same is true for A.

(3) Let R be a projective free ring then any matrix A ∈ Mn(R) which is a
product of proper idempotent matrices is similar to a matrix with a zero
row (column).

Proof. (1) We have r = er = euu−1r. Hence our hypothesis shows that r ∈ ΠE.
We also have u−1ru ∈ ΠE and hence ru = eru = euu−1ru ∈ ΠE. Finally ur =
u(ru)u−1ΠE.

(2) Let u−1 = Σj ̸=iejj + (1− Σj ̸=iαj)eii ∈ Gln(R). We then have have u−1A =
Ai = (1− eii)A and we check that the result follows by applying (1).

(3) If A is a product of idempotent matrices then there exists E = E2 ∈ Mn(R)
such that A = EA. Since R is projective free there exists an invertible matrix
P ∈ Mn(R) such that PEP−1 is a diagonal matrix with zero and one on the
diagonal. We thus have PAP−1 = PEP−1PAP−1 and hence PAP−1 has a zero
row. □

The first statement of Lemma 1 shows that it is important to know when an
invertible element u ∈ U(R) and an idempotent element e = e2 are such that
eu ∈ ΠE. We will give two examples of such a behavior in the frame of matrix rings.
Remark first that a matrix inMn(R) with its ith row zero belongs to (1−eii)Mn(R).
Let us recall that a matrix A ∈ Mn(R) is a permutation matrix if it each row and
each column has only one nonzero entry equal to 1.

Definition 2. A matrix A ∈ Mn(R) is a quasi permutation matrix (resp. quasi
elementary matrix) if there exists 1 ≤ i ≤ n and a permutation matrix P (resp.
elementary matrix Q) such that either A = (1 − eii)P or A = P (1 − eii) (resp
A = (1− eii)Q or A = Q(1− eii)).

It was proved in [1] that quasi permutation matrices are products of idempotent
matrices. Here we prove the similar result for quasi elementary matrices.

Proposition 3. A quasi elementary matrix is a product of idempotent matrices.

Proof. Assume that A is a quasi elementary matrix. We note that a quasi elemen-
tary matrix always has a zero row and a zero column. Such a matrix is always
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similar to a matrix having last row zero. In other words, we may assume that
our quasi elementary matrix A is of the form A = (In − enn)Q where Q is an
elementary matrix of the form Q = In + beij , where 1 ≤ i ̸= j ≤ n. If j = n,
then A = (In − enn)(In + bein) = In + bein − enn. This matrix is easily seen to be
idempotent. If j ̸= n, we have

A =

(
In−1 + beij 0

0 0

)
=

(
In−1 0
0 0

)(
In−1 + beij eTi

−bej 0

)(
In−1 0
0 0

)
We can easily check that all the three factors are idempotent matrices. □

Proposition 4. Let A ∈ Mn(R) be a matrix with a zero row (resp. column)
and Q be an elementary matrix or a permutation matrix. Then A is a product
of idempotent matrices if and only if QA (resp. AQ) is a product of idempotent
matrices.

Proof. First suppose that the matrix A has its ith row zero and is a product of
idempotent matrices. Let Q = Qk,l = Id + aekl with a ∈ R be an elementary
matrix. If i /∈ {k, l} then comparing the rows of the matrices on both sides we
get that Qk,lA = (id − eii)Qk,lA. If i = k, we have Qi,lA = (Id. − eii + aeil)A
(remark that Id.− eii + aeil is an idempotent). Finally if i = l we have Qk,iA = A
. In the three cases we conclude that if A is a product of idempotents then the
same is true for Qk,lA. Conversely, noting that Q−1 is also an elementary matrix,
we know, by Proposition 3, that the quasi elementary matrix (1 − eii)Q

−1 is a
product of idempotent matrices. Since the ith row of A is a zero row, we have
A = (Id−eii)A = (1−eii)Q

−1QA. This shows that ifQA is a product of idempotent
matrices, the same is true for A.

We leave the proof of the case when Q is a permutation matrix to the reader. □

3. Main results

We now consider a matrix P ∈ Mn+1(R) of the form

(
B C
0 0

)
.

Theorem 5. (1) If B ∈ Mn(R) is a product of idempotent matrices then so is(
B C
0 0

)
, for any column C.

(2) If B ∈ Mn(R) is invertible then

(
B C
0 0

)
is similar to the matrix

(
B 0
0 0

)
.

(3) If the matrix

(
B 0
0 0

)
is a product of idempotents then so is the matrix(

B C
0 0

)
where C = BQ for some column Q ∈ Mn1(R)

Proof. (1) B is a product of idempotent matrices, say B = E1 · · ·El then(
B C
0 0

)
=

(
I C
0 0

)(
E1 0
0 1

)
· · ·

(
El 0
0 1

)
is a product of idempotent matrices.

(2) If B is invertible we can write(
B C
0 0

)
=

(
I −B−1C
0 1

)(
B 0
0 0

)(
I B−1C
0 1

)
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(3) If the column C is right linear combination of the columns of B, say C = BQ,
for some column Q then we have(

B C
0 0

)
=

(
B BQ
0 0

)
=

(
B 0
0 0

)(
I Q
0 0

)
.

□

Remark 6. If B is not a product of idempotents (c.f. when B is invertible) it may

still happen that the matrix

(
B 0
0 0

)
is a product of idempotents. For example just

consider the matrix B =

(
X Y
0 0

)
∈ M2(k[X,Y ]). The matrix B is not a product

of idempotents since the ideal generated by X and Y is not principal. Note k[X,Y ]
is local and hence projective free, (cf. Lemma 1, [7]). But we can write:X Y 0

0 0 0
0 0 0

 =

X 0 Y
0 0 0
0 0 0

1 0 0
0 0 0
0 1 0

 .

We noteX 0 Y
0 0 0
0 0 0

 =

1 0 Y
0 1 0
0 0 0

1 X 0
0 0 0
0 0 1

0 0 0
0 1 0
0 0 1

1 0 0
1 0 0
0 0 1

 ,

is a product of idempotents.1 0 0
0 0 0
0 1 0

 =

1 0 0
0 0 0
0 0 1

1 0 0
0 1 0
0 1 0


Thus the matrix

(
B 0
0 0

)
is a product of idempotent matrices.

Proposition 7. Let A,B ∈ Mn(R) be such that A = CD where C ∈ Mn×r(R)
and D ∈ Mr×n(R). Suppose B + A is a product of idempotent matrices. Then the
matrix (

B 0
0 0

)
∈ Mn+r(R)

is also a product of idempotent matrices

Proof. Consider (
B 0
0 0

)
=

(
In −C
0 0

)(
B +A 0
D 0

)
Let us write B +A = E1 · · ·El where, for any 1 ≤ i ≤ n, E2

i = Ei we then have(
B +A 0
D 0

)
=

(
E1 0
0 1

)
· · ·

(
El 0
0 1

)(
In 0
D 0

)
.

This gives the proof. □

As a consequence we have the following proposition.



DECOMPOSITION OF MATRICES INTO PRODUCT OF IDEMPOTENTS AND SEPARATIVITY OF REGULAR RINGS5

Proposition 8. Let B be a matrix in Mn(R). Then the matrix

A =

(
B 0
0 0

)
∈ Mn+r(R)

is a product of idempotent matrices in each of the following cases:

(1) If there exists 1 ≤ i ≤ n such that (1−eii)B (resp. B(In−eii)) is a product
of idempotents.

(2) If B is a product of elementary matrices.
(3) If B is a permutation matrix.
(4) if B is an upper (resp. lower) triangular matrix. In particular, if B is a

diagonal matrix.

Proof. It is enough to consider the case when r = 1. Indeed if r > 1 and we assume

the result true for r = 1, then the matrix A′ =

(
B 0
0 0

)
∈ Mn+1(R) is a product

of idempotent matrices. Hence A =

(
A′ 0
0 0

)
is a product of idempotent matrices.

(1) Let B̃ = (1− eii)B be the matrix obtained by replacing the ith row of B by

a zero row. We can then write B̃ = B− eiBi, where Bi is the i
th row of B and ei is

the column with all entries zero except the ith one which is 1. Proposition 7 then
applies and gives the case when r = 1.

(2) It is clear that A is in fact a product of quasi elementray matrices and hence
Proposition 3 shows that A is a product of idempotent matrices.

(3) Since A is clearly a quasi permutation matrix, it is a product of idempotent
matrices.

(4) We consider only the case of upper triangular matrices. The proof proceeds
by induction on n ≥ 1. If n = 1 we have the following decomposition(

B 0
0 0

)
=

(
1 B
0 0

)(
0 0
1 1

)(
1 0
0 0

)
Assuming the result for upper triangular matrices of size n − 1, we consider the

case of a matrix A =

(
B 0
0 0

)
where B ∈ Mn(R) is upper triangular. We consider,

as in (1) above, the matrix B̃ = B(In − enn) obtained by replacing the last column

of B by zeros. Since B̃ is upper triangular, the induction hypothesis shows that
the matrix B̃ is a product of idempotent and hence (1) above shows that A is also
a product of idempotent matrices. □

Reacall that R is a separative ring if for any finitely projective right modules M
and N , M ⊕N ∼= N ⊕N ∼= M ⊕M implies that M ∼= N .

Theorem 9. If the ring R is a von Neumann regular separative ring then for any
matrix B ∈ Mn(R) the matrix(

B 0
0 0

)
∈ Mn+r(R), r > 0

is a product of idempotent matrices.

Proof. If the ring R is supposed to be von Neumann regular and separative then,
the Morita invariance of these properties implies that the same is true for any
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matrix ring over R. Let B be any matrix in Mn(R). The main result of [21] shows
that the matrix

A =

(
B 0
0 0

)
∈ Mn+r(R)

is a product of idempotent matrices if and only if the following relations between
the annihilators are satisfied:

lann(A)S = Srann(A) = S(In+r −A)S

where S = Mn+r(R). Let us prove the first equality. We let

X =

(
X1 X2

X3 X4

)
∈ lann(A)

with X1 ∈ Mn(R) and X4 ∈ Mr(R) and other matrices are of the appropriate size.
We notice that if X1 = 0 and X3 = 0 then X ∈ lann(A). We then get that lann(A)
contains the matrices with the first n columns all zero. Since the right ideal of S
generated by these matrices is S = Mn+r(R), we get that lann(A)S = S. Similarly

we also have Srann(A) = S. Since A =

(
B 0
0 0

)
, we can show that the ideal

generated by In+r −A is the ring S itself. This concludes the proof. □

Remark 10. It is an open question whether a von Neumann regular ring is always
separative. Let R be a von Neumann regular ring. If there exists a matrix B ∈

Mn(R) such that the matrix

(
B 0
0 0

)
∈ Mn+r(R) cannot be written as a product

of idempotent matrices then it follows from Theorem 9 that this will provide an
example of a regular ring R that is not separative. If B is invertible, this would
also answer the question (3) in [18].

Recall that a ring R is a GE ring, as defined by P.M. Cohn (cf. [8] p. 150), if for
any n > 0, the group GLn(R) is generated by elementary and diagonal matrices.

It was proved in [5] that a separative exchange ring is a GE ring. In particu-
lar, any separative regular ring is GE. We now generalize Theorem 9 when B is
invertible.

Theorem 11. If the ring R is a GE ring then for any invertible matrix B ∈ Mn(R)
the matrix (

B 0
0 0

)
is a product of idempotent matrices.

Proof. If n = 1 we can consider the decomposition obtained in the proof of Propo-
sition 8 (4).

So suppose that n > 1, and that R is a GE ring. Since B is invertible, the
matrix B is a product of elementary matrices and invertible diagonal matrices.
The conclusion follows easily from Proposition 8. □

We will now prove that if the matrix A =

(
B 0
0 0

)
is of size of at least twice the

size of B then A is a product of idempotent matrices.
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Proposition 12. Let A ∈ Ml(R) be of the form

A =

(
B 0
0 0

)
where B ∈ Mn(R) and l ≥ 2n then A is a product of idempotent matrices.

Proof. We first remark that, as in the begining of the proof of Proposition 8, it
is enough to consider the case when l = 2n. So we assume that A ∈ M2n(R).
Proposition 4 shows that that the given matrix is a product of idempotents if and
only if the matrix

A =

(
0 B
0 0

)
is a product of idempotents. But for this matrix we have the obvious decompositon

A =

(
0 B
0 0

)
=

(
I B
0 0

)(
0 0
0 I

)
□

4. totally nonegative matrices

We conclude this paper by answering in the negative the open question 2 in [18]:
is it true that a singular totally nonnegative matrix is a product of nonnegative
idempotents? The following example shows that this is not true. Consider the
following example of a singular totally nonnegative matrix

A =


α α 0 0
0 0 0 α
α 0 0 α
0 α 0 0

 α > 0

Let us assume that A = E1 . . . En where Ei ̸= I4 are nonnegative idempotents.
Then E1A = A. Let us write

E1 =


x1 y1 z1 t1
x2 y2 z2 t2
x3 y3 z3 t3
x4 y4 z4 t4

 xi, yi, zi, ti > 0 for 1 ≤ i ≤ 4

Comparing the first rows of E1 and E1A, we get x1+z1 = 1, x1+t1 = 1, y1+z1 = 0.
This gives x1 = 1, y1 = z1 = t1 = 0. Continuing in this way with other rows leads
to E1 = I4, a contradiction.
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