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ABSTRACT. Following O’Meara’s result [Journal of Algebra and Its Applica-

tions Vol 13, No. 8 (2014)], it follows that the block matrix A = (ﬁ 8) S

Mp4+r(R), B € Mp(R), r > 1, over a von Neumann regular separative ring
R, is a product of idempotent matrices. Furthermore, this decomposition into
idempotents of A also holds when B is an invertible matrix and R is a GE ring
(defined by Cohn [New mathematical monographs: 3, Cambridge University
Press (2006)]). As a consequence, it follows that if there exists an example of a

von Neumann regular ring R over which the matrix A = (ﬁ 8) € My+r(R)

where B € Mp(R), r > 1, cannot be expressed as a product of idempo-
tents, then R is not separative, thus providing an answer to an open question
whether there exists a von Neumann regular ring which is not separative. The
paper concludes with an example of an open question whether every totally
nonnegative matrix is a product of nonnegative idempotent matrices.

1. INTRODUCTION AND NOTATION

Decompositions of singular matrices over a field or division ring (cf. J. Erdos,
Laffey) as product of idempotent matrices led to the study of the decomposition
of certain elements of a ring as a product of idempotents. There is a plenty of
literature related to this question, where some of these are concerned with semi-
groups, nonegative matrices, or von Neumann regular rings (cf. Gould, Jain-Leroy,
O’Meara). All rings are unital. U(R), E(R), and IIE(R) denote the set of units,
the set of idempotents and the set of elements in R that are product of idempotents,
respectively.

We now give some basic facts about the decompositions of zero divisors of a ring
into products of idempotents.

If an element a of a ring can be written as product of idempotents then both
its left and right annihilators are nonzero. This leads to the study of the following
property

Va € R, l(a) #0 < r(a) #0 (%)

We note that unit regular rings, artinian rings, matrix rings over quasi euclidian
rings, amongst others, have this property (*) (cf. [10])
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0 0
Clearly I(A) # 0 and, if A is a product of idempotent matrices, we must have
r(A) # 0. Of course, this condition is not sufficient to write A as a product of
idempotents. For instance, if S = Q[X,Y] and X = z,Y = y we have XY €
XSNYS. But it is well known that, in this case, the matrix A is not a product of
idempotent matrices ([7]).

We collect some basic facts around matrices over any ring with a zero row. These
matrices will be the main topic of the next section. For any matrix A € M, (R)
we write A; = (1 — e;;) A, the matrix obtained from A by replacing its i'" row by a
ZETO TOW.

For example, for any ring S, consider the matrix A = <x y) € R = My(S).

2. PRELIMINARIES

Lemma 1. (1) Suppose u € U(R), e € E(R), and r € eR are such that

eu,u~tr € IE(R) then r,ru,ur € HE(R).

(2) Let A € M,(R) with rows L1,...,Ly, be such that L; = 3jz,c;L; with
1—Xjz0a; € UR). Then if A; = (1 —e;:)A is a product of idempotents,
the same is true for A.

(3) Let R be a projective free ring then any matric A € M, (R) which is a
product of proper idempotent matrices is similar to a matrix with a zero
row (column).

Proof. (1) We have r = er = euu'r. Hence our hypothesis shows that r € I1E.

We also have v~'ru € IIE and hence ru = eru = evu 'ru € IIE. Finally ur =
u(ru)u~IE.

(2) Let u™t = %55 + (1 — Xj405)ei € Gl (R). We then have have =14 =
A; = (1 — e;;)A and we check that the result follows by applying (1).

(3) If A is a product of idempotent matrices then there exists E = E? € M, (R)
such that A = FA. Since R is projective free there exists an invertible matrix
P € M,(R) such that PEP~! is a diagonal matrix with zero and one on the
diagonal. We thus have PAP~! = PEP"'PAP~! and hence PAP~! has a zero
TOW. (]

The first statement of Lemma 1 shows that it is important to know when an
invertible element u € U(R) and an idempotent element e = e? are such that
eu € IIE. We will give two examples of such a behavior in the frame of matrix rings.
Remark first that a matrix in M, (R) with its i'" row zero belongs to (1—e;;) M, (R).
Let us recall that a matrix A € M, (R) is a permutation matrix if it each row and

each column has only one nonzero entry equal to 1.

Definition 2. A matriz A € M, (R) is a quasi permutation matriz (resp. quasi
elementary matriz) if there exists 1 < i < n and a permutation matriz P (resp.
elementary matriz Q) such that either A = (1 —e;)P or A = P(1 — e;;) (resp
A=(1-e;)Q or A=Q(1—ey))

It was proved in [1] that quasi permutation matrices are products of idempotent
matrices. Here we prove the similar result for quasi elementary matrices.

Proposition 3. A quasi elementary matrix is a product of idempotent matrices.

Proof. Assume that A is a quasi elementary matrix. We note that a quasi elemen-
tary matrix always has a zero row and a zero column. Such a matrix is always
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similar to a matrix having last row zero. In other words, we may assume that
our quasi elementary matrix A is of the form A = (I, — e,,)Q where @ is an
elementary matrix of the form @ = I, + be;;, where 1 <4 # j < n. If j = n,
then A = (I, — enn) (I + bein) = I, + bein — enpn. This matrix is easily seen to be
idempotent. If j # n, we have

A= I,—1+ beij 0 . I,-1 O 1,1+ be,‘j 631 I,-1 O
- 0 0/ L0 0 —be; 0 0 0
We can easily check that all the three factors are idempotent matrices. O

Proposition 4. Let A € M,(R) be a matriz with a zero row (resp. column)
and Q be an elementary matrix or a permutation matriz. Then A is a product
of idempotent matrices if and only if QA (resp. AQ) is a product of idempotent
matrices.

Proof. First suppose that the matrix A has its i** row zero and is a product of

idempotent matrices. Let @ = Q; = Id + aer; with a € R be an elementary
matrix. If ¢ ¢ {k,I} then comparing the rows of the matrices on both sides we
get that Qr A = (id — €;;)QrA. If i = k, we have Q; ;A = (Id. — e;; + ae;)A
(remark that Id. — e;; + ae;; is an idempotent). Finally if i = [ we have Q; ;A = A
. In the three cases we conclude that if A is a product of idempotents then the
same is true for @y ;A. Conversely, noting that Q! is also an elementary matrix,
we know, by Proposition 3, that the quasi elementary matrix (1 — e;)Q ! is a
product of idempotent matrices. Since the i*" row of A is a zero row, we have
A= (Id—ei;;)A = (1—e;;)Q 1QA. This shows that if QA is a product of idempotent
matrices, the same is true for A.

We leave the proof of the case when () is a permutation matrix to the reader. [

3. MAIN RESULTS

We now consider a matrix P € M,1(R) of the form (B C).

0 0
Theorem 5. (1) If B € M,(R) is a product of idempotent matrices then so is
(g g) , for any column C.
(2) If B € M,(R) is invertible then (ﬁ g) is similar to the matriz (? 8)
(3) If the matriz <§ 8) is a product of idempotents then so is the matriz
B C
0 0 where C' = BQ for some column Q € M,1(R)

Proof. (1) B is a product of idempotent matrices, say B = Ej - - - E} then

(0 5)=( 5) (5 %) (5 1)

is a product of idempotent matrices.
(2) If B is invertible we can write

-6 66"
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(3) If the column C'is right linear combination of the columns of B, say C' = BQ,
for some column @ then we have

(060 %)= 069

Remark 6. If B is not a product of idempotents (c.f. when B is invertible) it may

0 8 is a product of idempotents. For example just
X Y
0 0
of idempotents since the ideal generated by X and Y is not principal. Note k[X, Y]
is local and hence projective free, (cf. Lemma 1, [7]). But we can write:

still happen that the matrix (B

consider the matrix B = ( ) € M>(k[X,Y]). The matrix B is not a product

X Y O X 0 Y 1 0 0
0 0 0)J=10 0 O 0 0 O
0O 0 O 0 0 O 01 0
‘We note
X 0 Y 1 0 Y\ /1 X O 0 0 O 1 0 0
0O 0 0)J=10 1 0 0 0 0 01 0 1 0 0],
0 0 O 0 0 O 0 0 1 0 0 1 0 0 1

is a product of idempotents.

o O O

0
0
1

O O =
o o O
I
S O =
S O =
== O
o O O

0
0
1
. (B 0Y\. . .
Thus the matrix 0 o)isa product of idempotent matrices.

Proposition 7. Let A,B € M,(R) be such that A = CD where C € M, «.(R)
and D € M,x,(R). Suppose B+ A is a product of idempotent matrices. Then the

matric
B 0

is also a product of idempotent matrices

Proof. Consider
B 0\ (I, -C\(B+A 0
0 0) \O 0 D 0
Let us write B+ A = E; --- E; where, for any 1 <1i < n, El2 = FE; we then have
B+A 0\ (E: O (E 0\ (L, 0
D 0/ \0 1 0 1 D 0)°
This gives the proof. (]

As a consequence we have the following proposition.
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Proposition 8. Let B be a matriz in M, (R). Then the matriz

A= (4 o) €Mt

is a product of idempotent matrices in each of the following cases:
(1) If there exists 1 <i <n such that (1 —e;;)B (resp. B(I,—e;;)) is a product
of idempotents.
(2) If B is a product of elementary matrices.
(3) If B is a permutation matriz.
(4) if B is an upper (resp. lower) triangular matriz. In particular, if B is a
diagonal matrix.

Proof. Tt is enough to consider the case when r = 1. Indeed if » > 1 and we assume

B 0> € M, +1(R) is a product

the result true for r = 1, then the matrix A’ = (O 0

!

0 0

(1) Let B = (1 — e;) B be the matrix obtained by replacing the i row of B by
a zero row. We can then write B = B — ¢; B;, where B; is the i" row of B and ¢; is
the column with all entries zero except the i*” one which is 1. Proposition 7 then
applies and gives the case when r = 1.

(2) Tt is clear that A is in fact a product of quasi elementray matrices and hence
Proposition 3 shows that A is a product of idempotent matrices.

(3) Since A is clearly a quasi permutation matrix, it is a product of idempotent
matrices.

(4) We consider only the case of upper triangular matrices. The proof proceeds
by induction on n > 1. If n = 1 we have the following decomposition

B 0\ _ (1 B\ (0 0\(/1 O
0 0/ \0 O 1 1/\0 0
Assuming the result for upper triangular matrices of size n — 1, we consider the

g 8) where B € M,,(R) is upper triangular. We consider,

as in (1) above, the matrix B = B(I,, — eny,) obtained by replacing the last column
of B by zeros. Since B is upper triangular, the induction hypothesis shows that
the matrix B is a product of idempotent and hence (1) above shows that A is also
a product of idempotent matrices. [l

of idempotent matrices. Hence A = ( ) is a product of idempotent matrices.

case of a matrix A = (

Reacall that R is a separative ring if for any finitely projective right modules M
and N M@&N=N®N=M® M implies that M = N.

Theorem 9. If the ring R is a von Neumann regular separative ring then for any
matric B € M, (R) the matriz

B 0
(0 O) € M4+ (R), >0
is a product of idempotent matrices.

Proof. If the ring R is supposed to be von Neumann regular and separative then,
the Morita invariance of these properties implies that the same is true for any
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matrix ring over R. Let B be any matrix in M, (R). The main result of [21] shows
that the matrix

A= (4 o) €Mt

is a product of idempotent matrices if and only if the following relations between
the annihilators are satisfied:

lann(A)S = Srann(A) = S(I,4, — A)S
where S = M, 1,(R). Let us prove the first equality. We let

(X Xe
X = (X3 X4) € lann(A)

with X3 € M,,(R) and X, € M, (R) and other matrices are of the appropriate size.
We notice that if X1 = 0 and X3 = 0 then X € lann(A). We then get that lann(A)
contains the matrices with the first n columns all zero. Since the right ideal of S
generated by these matrices is S = M,,+.(R), we get that lann(A)S = S. Similarly
B

0 0)’

generated by I+, — A is the ring S itself. This concludes the proof.

we also have Srann(A) = S. Since A = we can show that the ideal

Remark 10. It is an open question whether a von Neumann regular ring is always
separative. Let R be a von Neumann regular ring. If there exists a matrix B €
B 0
0 0
of idempotent matrices then it follows from Theorem 9 that this will provide an
example of a regular ring R that is not separative. If B is invertible, this would
also answer the question (3) in [18].

M, (R) such that the matrix € M, 1,(R) cannot be written as a product

Recall that a ring R is a GE ring, as defined by P.M. Cohn (cf. [8] p. 150), if for
any n > 0, the group GL,(R) is generated by elementary and diagonal matrices.

It was proved in [5] that a separative exchange ring is a GE ring. In particu-
lar, any separative regular ring is GE. We now generalize Theorem 9 when B is
invertible.

Theorem 11. If the ring R is a GE ring then for any invertible matriz B € M,,(R)
the matriz
B 0
(@ 9)

is a product of idempotent matrices.
Proof. If n =1 we can consider the decomposition obtained in the proof of Propo-
sition 8 (4).

So suppose that n > 1, and that R is a GE ring. Since B is invertible, the
matrix B is a product of elementary matrices and invertible diagonal matrices.
The conclusion follows easily from Proposition 8. O

We will now prove that if the matrix A = 0) is of size of at least twice the

B
0 0
size of B then A is a product of idempotent matrices.
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Proposition 12. Let A € M;(R) be of the form
B 0
= (5 o)
where B € M, (R) and |l > 2n then A is a product of idempotent matrices.

Proof. We first remark that, as in the begining of the proof of Proposition 8, it
is enough to consider the case when | = 2n. So we assume that A € Ms,(R).
Proposition 4 shows that that the given matrix is a product of idempotents if and

only if the matrix
0 B
+=(o o)

is a product of idempotents. But for this matrix we have the obvious decompositon
A 0 BY (I BY{(0 O
“\0 0) \0 0/J\0 I

4. TOTALLY NONEGATIVE MATRICES

We conclude this paper by answering in the negative the open question 2 in [18]:
is it true that a singular totally nonnegative matrix is a product of nonnegative
idempotents? The following example shows that this is not true. Consider the
following example of a singular totally nonnegative matrix

a o 0 0
0 0 0 «

A= 0 0 0 a a>0
0 aa 0 O

Let us assume that A = E;...E, where E; # I, are nonnegative idempotents.
Then F1A = A. Let us write

r1 y1 21 h
To Y2 22 to )
E, = Ti,Yi, 2ist; >0 forl <i<4
1 R tg iy Yis Ziy Ui

T4 Yo 24 14

Comparing the first rows of Fy and F1 A, we get 1421 =1, 1+t = 1, y1+21 = 0.
This gives 1 = 1, y; = z; = t; = 0. Continuing in this way with other rows leads
to E1 = Iy, a contradiction.
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